A Quick Guide to Regular Expressions

Professor Don Colton

Brigham Young University Hawaii

1 What Are We Trying To Do?

Regular Expressions are used for processing blocks
of text. They have other uses, but we will focus on
the text uses here. We will use the syntax of PERL.
Similar syntax applies to TCL and other languages
that support regular expressions.

A block of text is also called a string. It is com-
posed of a sequence of characters. Typically we think
of the string as being words designed for human
view.

We have two main goals. The first goal is to rec-
ognize a string as belonging to a certain category,
such as phone numbers or female names. As a hu-
man, if I show you a phone number, you are likely
to be able to identify it as a phone number, even if
you have never seen that phone number before.

The second goal is to extract useful information
from the string. This information may be located
and identified by its surrounding context.

There can be other goals, such as the modification
of the string to cause it to meet certain standards.
For instance, we could find all instances of two or
more spaces in a row and replace each instance with
a single space. Or we could look for common spelling
errors and replace them with their corrections.

Because these types of problems occurs again and
again, computer scientists have been motivated to
find a good solution. The solution is called regular
expressions.

2 Recognition

The first goal is to recognize a string as being a
member of a certain category. Is it a social secu-
rity number? Is it a vehicle license plate number? Is
it a possible word in English? As a human, you are
likely to be able to answer yes or no in each case with
a high degree of accuracy. Let’s begin by focusing
on license plates.

2.1 License Plates

In Hawaii currently a vehicle license plate gener-
ally consists of three letters followed by three dig-
its. There are other configurations, including so-
called vanity plates that can be almost anything.
Let’s focus on typical plates. Say your computer
program input is ABC123 and you must determine if
that meets the pattern. As a human you can eas-
ily say yes. But as a computer program, how easy
is it? One could build a program with a lot of if
statements, like this:

Plan A: check every plate

about 17.5 million lines long

$okay = 0; # default

if ($plate eq "AAA00O") { $okay

if ($plate eq "AAA0O1") { $okay

if ($plate eq "AAA0O2") { $okay
. you can guess what goes in between

if ($plate eq "ZZZ999") { $okay =1 }

1]
= o e
[T

This would be a really long program. About 17.5
million lines. You would probably like to avoid writ-
ing it. So here is an alternative that looks at each
character separately.

Plan B: check every letter

about 127 lines long

$char6 = chop ($plate);

$okay6 = 0;

if ($char6 eq "0") { $okay6 = 1 }
if ($char6 eq "1") { $okay6 = 1 }

if ($char6 eq "9") { $okay6 = 1 }
$charb = chop ($plate);

$okays = 0;

if ($charb eq "0") { $okays = 1 }

$charl = chop ($plate);

$okayl = 0;

if ($charl eq "A") { $okayl = 1
if ($char6 eq "B") { $okayl = 1

o

if ($char6 eq "Z") { $okayl = 1 }
$okay = 1; # default
if ($charl !'= 0) { $okay = 0 }

Validating one digit takes 12 lines. Validating one
letter takes 28 lines. That totals 127 lines. You
would probably agree it is a big improvement over
Plan A above.

2.2 Character Classes

To recognize a digit, we can use the following regular
expression.

if ($ch6 =~ m/[0123456789]/) { $ok6 = 1 }

This deserves some explanation. The first inter-
esting thing is the =~ operator, which in PERL indi-
cates that a regular expression is being matched or
substituted. (It can also indicate a translation oper-
ation, but that is beyond the scope of this paper.)

The m/../ part indicates that a matching oper-
ation is happening. The m means match. (An s is
used for substitution.) The slashes are delimiters
that surround the regular expression.

The [0123456789] part indicates a character
class. It matches when any of the characters in that
list matches.

This gives rise to yet another plan.

Plan C

about 14 lines long

$ok = 0;

$ch6 = chop ($plate);

if ($ch6 =" m/[0123456789]/) { $ok++ }

$chb = chop ($plate);

if ($ch5 =~ m/[0123456789]/) { $ok++ }

$chd = chop ($plate);

if ($ch4 =" m/[0123456789]/) { $ok++ }
. do something for the letters

if ($ok == 6) { success! }

You can see that this is a big improvement over
Plan B. It shortens the testing of each digit by nine
lines. It shortens the program considerably. The
result is about 14 lines, which almost 90% smaller
than 127 lines.

2.3 Character Ranges

It is common to want to match a character to an
uninterrupted range of characters, such as zero to

nine, or A to Z. Regular expressions typically include
a short-cut way to express the same thought given
above by using a dash to indicate a character range.

if ($ch6 =" m/[0-91/) { $ok6 =1 }

Characters (digits and letter and punctuation)
are stored in the computer as a sequence of bi-
nary digits (bits: zeros and ones). One typical code
is called ASCII. Another is UNICODE. Character
ranges work because the digits zero to nine take up
adjacent positions in the character code.

-
[=]

ASCII is 0110000
in ASCII is 0110001
in ASCII is 0110010
in ASCII is 0110011
in ASCII is 0110100
in ASCII is 0110101
in ASCII is 0110110
in ASCII is 0110111
in ASCII is 0111000
in ASCII is 0111001

© 00N O WN - O

If you are familiar with binary numbers, you will
see that the ASCII codes for “0” to “9” are the bi-
nary numbers for 48 through 57. The main thing is
that the range includes everything we do want and
nothing we don’t want.

Thinking about letters, we might have considered
doing this:

$chl =~ m/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

Fortunately the letters A to Z form a range. We
can say [A-Z]. And little a to little z form a range
([a-z]). Unfortunately those two ranges are sep-
arated so we cannot say [A-z] and have it work
correctly.

Here is an improved program

Plan D

about 14 lines long

$ok = 0;

$ch6 = chop ($plate);

if ($ch6 =" m/[0-91/) { $ok++ }
$ch5 = chop ($plate);

if ($ch5 =" m/[0-91/) { $ok++ }
$ch4 = chop ($plate);

if ($ch4 =" m/[0-91/) { $ok++ }
$ch3 = chop ($plate);

if ($ch3 =" m/[A-Z]/) { $ok++ }
$ch2 = chop ($plate);

if ($ch2 =" m/[A-Z]/) { $ok++ }
$chl = chop ($plate);

if ($chl =" m/[A-Z]/) { $ok++ }
if ($ok == 6) { success! }

2.4 Matching Several Characters

Regular expressions are not limited to matching a
single character at a time. We can match several
characters at the same time. In this regular expres-
sion, we are looking for letter, letter, letter, digit,
digit, digit.

$plate =" m/[A-Z] [A-Z] [A-Z] [0-9] [0-9] [0-9]/

Notice that we eliminate the chops and we can
make the whole process happen in a single state-
ment:

if ($plate =" m/.../) { success! }

This is an incredible improvement, but language
tinkerers seem to never be satisfied until they have
squeezed the last drop of redundancy out of some-
thing.

2.5 Multipliers

Here is another improvement.
if ($plate =" m/[A-Z]1{3}[0-91{3}/)

This improvement uses {3} as a multiplier to say
that [A-Z] must happen exactly three times, and
[0-9] must also happen exactly three times.

We can use the multiplier to give us some flexi-
bility on the length. Here is a regular expression to
match a license plate that consists of between 1 and
7 letters or digits in any order.

if ($plate =" m/[A-Z0-91{1,7}/)

Notice that we have included two character ranges
in the character class, and we have given a multiplier
of {1,7} which means a minimum of 1 and a maxi-
mum of 7 repetitions.

To match three or more of something, we can say
{3,}. To match less than five of something, we can
say {0,4}.

There are three special cases that are so popular
they have an even shorter short cut.

{0,> is *
{1,} is +
{0,1} is e

When something can be repeated zero or more
times, we put a star (*) in the regular expression.
For one or more times, we can put a plus (+). If
something is optional, meaning it can occur zero or
one times, we can put a question mark (7).

Here is a regular expression for a number with a
decimal point:

(+-17[0-9]+[.] [0-9]+

Notice it has an optional sign ([+-]17), followed by
one or more digits ([0-9]1+), followed by a dot ([.1),
followed by one or more digits. If we are using dash
(=) itself as one of the characters, we simply list it
last (or first) in the character class.

2.6 A Small Lie

It is time to correct a small oversight in our dis-
cussion. To keep things simple, we have not talked
about position anchors. There are two of them com-
monly used with regular expressions. The start-of-
string anchor is caret (7). The end-of-string anchor
is dollar ($).

Without these position anchors, all our regular
expressions mentioned above will match any string
that contains the target. For instance,

$line =" m/[+-]17[0-9]+[.]1[0-9]+/

will match any $line that has a decimal point
number anywhere inside. To restrict our attention
to lines that have nothing else before the number,
we can say this:

$line =~ m/"[+-]17[0-91+[.]1[0-9]1+/

Notice the caret at the front of the regular ex-
pression. To restrict our attention to lines that have
nothing else after the number, we can say this:

$line =" m/[+-17[0-9]+[.][0-9]1+$/

To restrict our attention to lines that have nothing
else before or after the number, we can say this:

$line =~ m/"[+-17[0-91+[.]1[0-9]1+$/

2.7 More Shortening

By the way, the m in the m/.../ construct is op-
tional. We can leave it out if we are using slashes as
the delimiters. It is another short cut.

Also, there is a short cut for digit. Instead of
saying [0-9], we can simply say \d. There are a
number of similar short cuts.

3 Data Extraction

Say we want the middle two digits of a US Social
Security number. We can recognize the number like
this:

/"\d{3}-\d{2}-\d{4}$/

This means: Must begin at the start of the string.
Match three digits. Match one dash. Match two dig-
its. Match another dash. Match four digits. Must
end at the end of the string.

By placing parenthesis around the part we wish
to extract, we can isolate parts of the string that
interest us.

$ssn =~ /"\d{3}-(\d{2})-\d{4}$/
$middle = $1;

In this case, there are parenthesis around the
\d{2}. Because these are the first set of parenthesis,
the matching part is stored in special variable $1.

Here is a longer example:

$ssn = "321-54-9876";

$ssn =" /" (\d{3H)-(\d\d)-(\d{4}1)$/;
$first = $1;

$middle = $2;

$last = $3;

In this case, $first will end up containing 321.
$last will end up containing 9876.

3.1 Nuts and Bolts

A problem arises in CGI programming. We will not
discuss CGI programming in any depth here, but
suffice it to say that we can receive inputs that look
like this:

nuts=5&bolts=12

We can use a regular expression to extract the
5 and 12 which we may need to use to update a
database or fulfil an order. We can do it like this:

chomp ($line = <STDIN>);

$line =" /"nuts=(\d+)&bolts=(\d+)$/;
$nuts = $1;

$bolts = $2;

